Graph of cylinder x^2 y^2=1 203048
Traces are useful in sketching cylindrical surfaces For a cylinder in three dimensions, though, only one set of traces is useful Notice, in Figure 280, that the trace of the graph of z = sin x z = sin x in the xzplane is useful in constructing the graphThe trace in the xyplane, though, is just a series of parallel lines, and the trace in the yzplane is simply one line
Graph of cylinder x^2 y^2=1- See the explanantion This is the equation of a circle with its centre at the origin Think of the axis as the sides of a triangle with the Hypotenuse being the line from the centre to the point on the circle By using Pythagoras you would end up with the equation given where the 4 is in fact r^2 To obtain the plot points manipulate the equation as below Given" "x^2y^2=r^2" ">"Cone Volume & Radius;
Graph of cylinder x^2 y^2=1のギャラリー
各画像をクリックすると、ダウンロードまたは拡大表示できます
![]() | ![]() | |
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | ![]() | |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | ![]() | ![]() |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ||
![]() | ![]() | ![]() |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | ![]() |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | ![]() |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | |
![]() | ||
![]() | ![]() | |
![]() | ![]() | |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ![]() | |
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | ![]() | |
「Graph of cylinder x^2 y^2=1」の画像ギャラリー、詳細は各画像をクリックしてください。
![]() | ||
![]() | ||
![]() | ![]() |
Steps to graph x^2 y^2 = 4Surface we have x2 y2 = u2 = z This is the equation for a parabolic bowl centered on the zaxis with vertex at the origin Example 12 Identify the surface with parametric equations ~rx,ϑ) = u~iucos(ϑ)~j usin(ϑ)~k Since x = x, y = xcos(ϑ) and z = xsin(ϑ), at any point on this surface we have y2 z2 = x2 This is the equation for a
コメント
コメントを投稿